In some ways, pumps are very simple devices, which explains their regular and repeated use throughout history. In other ways, though, pumps can be extraordinarily complex. Affinity laws. Hydraulic gradients. Suction specific speed. Air entrainment. Cavitation. Those are only a few, randomly selected elements that you need to consider when selecting a pump and designing a system. And another element that you’ll need to think about is the relation between dynamic viscosity and specific gravity — particularly when installing a centrifugal pump.

In this post, we will discuss the niceties of specific gravity vs. viscosity, how they impact pump performance, the practical limits of which you should remain aware, and various applications to the pump curve.

## Specific Gravity and Viscosity Differences

The first thing we will do is define specific gravity and viscosity. While both concepts share some similarities, their differences can trip up end users and could potentially lead to catastrophic results.

The simplest way to think about specific gravity is to start with the idea of density. Every kind of matter has mass that occupies a particular amount of volume, including liquids. But rather than explicitly listing the specific units associated with a particular density (e.g., grams per cubic centimeter, pounds per cubic inch), specific gravity allows us to simplify by dividing by the specific gravity of water, which is the density of water at 4 degrees Celsius. By definition, the specific gravity of water is 1. The specific gravity formula for other materials is their density (mass divided by volume) divided by the specific gravity of water. Note that you would need to convert the specific gravity of water into the units used by the measured material.

In and of itself, specific gravity doesn’t really factor into the performance of a pump — at least not directly. But that doesn’t mean it isn’t important. As *Pumps & Systems* notes, “Specific gravity is important when sizing a centrifugal pump because it is indicative of the weight of the fluid, and its weight will have a direct effect on the amount of work performed by the pump. One of the beauties of the centrifugal pump is that the head (in feet) and flow it produces has nothing to do with the weight of the liquid. It is all about the velocity that is added by the impeller” (emphasis added). In other words, liquids with different specific gravities will require different motors, but the flow and head (i.e., the maximum height to which the pump can move a liquid) should remain essentially the same.

Though we tend to associate viscosity with specific gravity, it is an entirely separate characteristic. One way to think about viscosity is to compare it with friction. However, viscosity is focused on the internal friction of a liquid rather than the friction produced when it meets another kind of material. Writing for *Pumps & Systems*, Jim Elsey defines viscosity as “a measure of a fluid’s resistance to flow at a given temperature. You can also think of it as fluid friction. A more technical definition would explain viscosity as a force required to move a liquid plane (think plate) of some unit area, over some distance above another plane of equal area in a defined time period. In training classes, I simply define viscosity as a fluid’s resistance to pour but, more importantly, a resistance to be pumped.”

As you can see, a fluid’s viscosity will have a dramatic impact on how a centrifugal pump functions. In the next section, we will provide some viscosity examples and describe how they may react with a pump.

## How Viscosity Affects Centrifugal Pumps

When discussing viscosity and centrifugal pumps, understand that a liquid with a specific gravity that’s close or equal to that of water won’t significantly change the head or flow. However, if the liquid has a viscosity that varies significantly from the viscosity of water, you will see head and flow take a major hit. (Remember that viscosity doesn’t have any necessary connection with a liquid’s specific gravity, and some liquids with low specific gravities can still be very viscous.) Why? Because high viscosities impact centrifugal pumps at every area of operation. For instance, kinematic viscosity refers to a liquid’s inherent resistance to flowing, and pumping highly viscous materials successfully also requires a dramatic increase of break horsepower (i.e., a measure of an engine’s power absent any friction losses).

## Selecting the Right Pump for Viscosity

Part of selecting the right pump for a viscous material lies in understanding that not all liquids behave in the same way. In fact, the viscosity of many liquids can behave differently depending on whether or not energy is applied to them in certain amounts or ways. Consider the following viscosity types and viscosity examples:

*Newtonian Fluids.*These fluids decrease in viscosity as temperature increases. Examples include motor oil, alcohol, and glycerin.*Thixotropic Fluids.*When energy is added over time, thixotropic fluids exhibit decreased viscosity. Often this energy transfer involves shaking or agitation. Thixotropic substances include certain kinds of paint, mayonnaise, and ketchup. (Think of smacking the bottom of a ketchup bottle to start the savory and salty substance flowing.)*Dialant Fluids.*These function in the exact opposite manner from thixotropic fluids, becoming thicker when energy gets added (e.g., candy compounds, pseudoplastics).*Rheopectic Fluids.*Rheopectic fluids initially behave like dialant fluids, but their rate of viscosity continues to increase as energy is continually applied. Gypsum paste, lubricants, synovial fluid, cream, and some inks are rheopectic.

Once you know the viscosity characteristics of the liquid you plan to pump, you can apply several steps to determine the ideal pump for you. They involve:

- Calculating the required flow rate and total dynamic head at the operating temperature
- Apply an appropriate correction chart (see below)
- Apply the correction factors
- Use these adjusted values in conjunction with the manufacturer’s supplied water performance curves

## Maximum Viscosity Levels for Centrifugal Pumps

Though centrifugal pumps are the most commonly used type of pump, common wisdom doesn’t recommend using them when a fluid’s viscosity exceeds 300 centistrokes. (A centistroke is a standard engineering unit of viscosity, one that compares the fluid’s absolute viscosity to its specific gravity.) Some experts say that the effective range of viscosities for well-designed centrifugal pumps may range from 1,400 to 3,300 centistrokes.

When trying to determine the attributes of your liquid, it helps to take different measures of viscosity. A few useful devices for taking such measurements include:

- Viscosity cups
- Consistometers
- Glass capillary viscometers
- Tuning fork vibration viscometers
- Rotational viscometers

## How specific gravity affects centrifugal pumps and, by extension, pump curve

Pump manufacturers publish so-called pump curves, detailed charts that provide information about a pump’s flow, head, and power usage. Unfortunately, that curve only describes the flow, head, and power usage when pumping water. What is an end user with a viscous fluid to do?

The answer is to calculate correction factors for capacity, head, and hydraulic efficiency. When applied, these will shift the manufacturer-provided curves to show the pump’s effective capacity with the viscous liquid. PDH Online has a detailed article that offers calculations and examples about how to determine the various correction factors.

If you need a pump that can function well under a variety of conditions, contact us here at March Pumps. We’ve been designing pumps since 1955, and we have the expertise and dedication to find one that works for you.